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1 Introduction: The Cantor Set

I will start by introducing a set from its analysis in the textbook [5].

1.1 Definition / Construction

Let Cy be the closed interval [0,1]. Each iteration, take out the open middle
third from the interval. For example, C1 = [0,%] U [2,1] and C; = ([0, §] U
(3, 5D U (3. §1UI[5, 1)

Name the Cantor set C' = (°_,C,, (figure 1)

Figure 1: Cy to Cg used in constructing the Cantor set
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1.2 Some Properties of the Cantor Set
1.2.1 Infinintely many points:

It is clear that Vn € N| % € C. So, the Cantor set has at least countably many

points, and we will see that it has uncountably many.

1.2.2 Length Zero:

Without defining measure in detail, if a < b then let the length of the interval

[a,b] to be b—a. From each Cy,—1 to Cy,, 2"~ intervals of size ()" are removed.
The initial length is 1, so the final length is given by 1 — 1 —2 — 4 ... =

1— 8, =1-1=0.

- =
1-3

1.2.3 Uncountable:

To see this, represent numbers in tetrinary; digits 0, 1, and 2. For example,
0.2 represents %, and 0.1201 represents % + % + 2% + 8711' Then, z € C <=>
x = 0.a1a%a3a4 - - -, where Vn € N,a,, =0V a, = 2.

Contrapositive. Let x = 0.ajazasay4 - -+, where In € N 3 a,, = 1. Then, if any
other digit after n is not 0, then x is in an open middle third. Then, x is not in
the Cantor set. If every digit after n IS 0, we can make an equivalent sequence
for x being 0.a1as - --a,_1022222---, so that the sequence will converge to a
number that is on the boundary of some closed interval in the construction.
Converse: If x = 0.a1a0a3a4 - -+, where Vn € N,a,, = 0V a,, = 2, then x is in
each C,, particularly in the closed interval corresponding to a,. So, z € C.
Now do the typical proof of uncountability that Canter did the real numbers.
Suppose that you could enumerate all numbers in the Cantor set. Then, make a
sequence of all numbers in the cantor set, say (z,,). Then, make a new number
y = 0.b1b2b3by - - - with the following rule: b, = 2 if the corresponding digit in
Zp is 0, and b,, = 0 if the corresponding digit in x,, is 2. This number is not in
the original enumeration because it is distinct from every z,,. Also, this number
is still in the Cantor set, as it still meets the criterion for being in C.

Note that the Cantor set being uncountable implies it contains irrational ele-
ments, because if it contained only rational elements then it would be countable
(contradiction).

1.2.4 Compact:

Let z,, be a sequence in C. Then, x,, is also a sequence in [0, 1], which itself is
compact (Heine-Borel: it is closed and bounded). So there is some subsequence
Zp, — 2 € [0,1]. Now, it remains to show that x € C.

Proof by contradiction. Suppose that z ¢ C. Then, x is in some open middle
third of C'y for some N € N. By openness, there is some € > 0 so that B(z;¢€) C
that open middle third. In that case z,, € Cn => z,, ¢ B(z;e). This
diasterously fails the convergence, so a contradiction arises from letting = ¢ C.



Conclude that = € C. Hence, the Cantor set is compact. By Heine-Borel, it is
closed and bounded as well.

1.2.5 It is also perfect and totally disconnected.

A set is perfect if it is closed and contains no isolated points; this is equivalent
to saying the set is the set of all its limit points.

A set is E is totally disconnected if, given any two distinct points z,y € E, there
exist separated sets A and B withx € A,y € B, and F = AU B.

No point in the Cantor set is isolated, and for any two points there are two sepa-
rated disjoint sets whose union is the Cantor set. The proofs are less interesting
so I will omit them. For perfect, the principal argument is that the Cantor
set is closed and any point is in all C,, so that it is contained in a sequence of
decreasing intervals. For any e it will have some n where some point ¢ € C,
satisfies € > 3% > |z — ¢|. For totally disconnected, the same argument is done
backwards. At some point, the closed intervals get too small to contain two
distinct points of finite distance apart.

1.2.6 It is nowhere-dense in [0,1] and in R

A set is nowhere-dense if its closure contains no nonempty open intervals.

The closure of C is C, because C is closed, as discussed. Without too much
rigour, C contains no nonempty open intervals (epsilon balls) because any two
points in the ball will be disconnected, which implies there is some point between
them not in C. This contradicts the interval being an interval.

What this implies is that the complement of C in [0, 1] and the complement of C
in R is dense. This should be intuitively true, as the length of that complement
in [0,1] is 1 — 0 = 1, which is the length of the superset. Having a measure that
isn’t 0 doesn’t mean a set can’t be dense, since the rationals of length 0 are
dense in the real number line of infinite length. However, if the measure of the
set is that of the superset, then it is dense in that set: suppose that [0,1] — C
wasn’t dense in [0,1]. Then for some a < b € [0, 1], there is an open interval
(a,b) belonging entirely to C, so that the length of [0,1] —C is <1—(b—a), a
contradiction to its length being 1.

1.2.7 When added to itself, it is the interval [0, 2]

Define S +T7 = {s+1t: s € S,t € T}. Then it is not hard to show that
[0,1] 4+ [0,1) = [0,2]. If z,y € [0,1] then 0 < x < 1,0 < y < 1, so that added
together 0 <z +y < 2. If 2 € [0,2] then 0 < z < 2 so that 0 < z/2 < 1, so let
x,y=2z/2.

Now it may also be shown that C' + C = [0,2]. To prove this, it is easiest to
complete the proof visually and inductively, and then summon the compactness
of the Cantor set. Although more rigorous proof exists, it is boring and less
instructional, so I'll do it this way. Firstly, C + C C [0, 2], because C C [0,1] (I
won’t write it out in detail). For the reverse direction, lay out two C),s on the



R x R plane, i.e. Cp, x Cp,.

Then if € [0, 2], a line x; + x2 = z that intersects C), x C,, represents that at
some point, dx1,z2 € C), such that 1 + 22 = z € [0,2]. In fact any line that
does this will intersect C,, at least twice because of the interchangeability of x;
and zo, but the uniqueness does not matter here.

I claim that any line of the form « € [0, 2], 1 + 29 = * WILL intersect C,, x C),
Vn € Zx>o. Cp x Cy is already known and is obvious. Cj x Cj is represented
in figure 2. This contains 4 subsquares. It is obvious visually, but it can be
equivalently shown that C;+C = [0, 2] by writing. Let us carry forth a modified
induction. Let P(n) be the statment: Let x € [0,2]. Then z1, + 22, = x for
some Ty, Lo, € Ch.

#1: P(0) and P(1) is true.

#2: Let P(n) be true for some n € Z>o. Then the line z1,, + 2, = x intersects
C,, x C,. So the point (z1,,22,) is in a subsquare of C,, x C,. Now zoom
in to said subsquare, which is now analogous to Cy x Cy. When changing to
Chry1 X Cpy1, the operation is analogous to switching from the subsquare being
CyxCp to Cy xC1. But we already know, the same line will intersect C; x C7, and
equivalently will intersect C,, 41 X Cj,+1. Figure 3 can help visualize this. So by
letting € [0, 2], we find o1 (y4-1) +Z2(n41) =  for some 21 (y41), To(n41) € Cn1-
Hence, P(n+1) is true.

P(n) is true Vn € Z>o. Now we have constructed some sequence (21, Z2,). I
will now summon the compactness of the Cantor set. Since x1,, 22, € C, C C
Vn € Z>o, then x1, has subsequence z,, — 1 € C, so that now z, has
its own subsequence Top,, — T2 € C. Take that final subsequence. Since
ZT1n + T2, — x then any subsequence of it will converge to x as well, so by the
ALT on the final subsequence, Ting, +I2nkj — x but also Ting, +l‘2nkj — x1+T2
so that 1 + 22 =z, and z1,29 € C.



Figure 2: C7 x C to construct Cantor dust in 2D




Figure 3: Cy x (5 to construct Cantor dust in 2D




1.3 Operating on the Cantor Set: Dimension

The Cantor set is weird. It is much smaller than the real number line and all
of its points are disconnected from each other, but no point is isolated. The set
is still uncountable and cannot be represented as something smaller. It is much
bigger than the rationals, and yet it is not dense. It is much smaller than [0, 1],
yet it is as sufficient as [0,1] to add to itself to get [0, 2], so that it is somehow
[0,1] with less junk for that task. So we are met with an object which does
not work as expected, and eludes normal thought. On our lifelong pursuits to
complete mathematics, we seek something that might quantify the properties
of this set.

We conjecture that this object is not any object of normal dimension, and we
want to find its dimension. For a self-similar shape, if you zoom into the figure,
or alternatively if you multiply its scale (stretch it) by the same amount like «,
then it will repeat itself a? times where d is the dimension.

As long as multiplication by a real number is defined, define « - S, where S is a
set, to be a- S = {a-s:s € S}. Then, say that in the multiplication of the set
by a > 0, we now have [ copies of the original set .S, perhaps offset by some
amount. Then the dimension d is given by f = a?, or d = %

Multiply the set [0, 1] by 3. The new set is 3-[0, 1] = [0, 3] = [0, 1]U[1, 2]U[2,3] =
[0,1]U ([0,1] + {1}) U ([0, 1] + {2}). These are 3 copies of [0, 1] so we get 3 = 3¢
or d = 1. So the line has dimension 1. Next try a square like [0,1] x [0,1].
Multiply it by 3, and get [0,3] x [0, 3] which can contain 9 of the squares like
the original. Get that 3 = 3% or d = 2. This is similar for the circle, triangle,
and familiar shapes; they behave well here. For the cube, there are 27 copies of
the original cube so 27 = 3% so d = 3.

Now for the Cantor set. Multiply it by 3, and when making the construction
observe that 3 - Cy gives 2 Cys. So we now have two Cantor sets that will be
formed as the construction continues. In other words, 3-C = CU (C + {2}), so
2=3% s0od= "2 ~0.631

I will extend this idea of dimension onto more sets that, when magnified, will
become copies of themselves; these are called self-similar. This dimension has
the chance of being silly for a variety of reasons, but for now let’s just roll with
it.



2 Making More Sets like Cantor on the Real
Number Line

2.1 Construction

Start with Dg = [0, 1]. Let @ > 1 and for each iteration, remove the open middle

interval of diameter 1 of the original interval, so that Dy = [0, 1_2% Ju[l— 1_2é ,1].

Repeat. Then D = (2, D,

For similar reasons as before, it should not be hard to convince oneself that this
set D also has no length, is compact, uncountable, perfect, totally disconnected,
and nowhere-dense in [0, 1] and R.

2.2 Dimension

Make the set 21 - D. Then set Dy is now [0,1]U[:2r — 1, -21]. Now there are
two copies Dgs of their original size that exist here. We have that 2 = ( 1,2; )4,

If a = 3 then we recover the initial derivation, and if a = 2

In2
ln(ﬁ) :
then the dimension is exactly % As a — o0, d =~ 1, which makes sense, as you
remove less and less of the set. And as @ =1 1, d =1 0, which makes sense, as
you remove more and more of the set.

so d =

2.3 Other possibilities for sets like Cantor

You may construct somewhat similar sets like above, but instead of the open
middle interval, have two open middle intervals, or perhaps more. For example,
Fy=[0,1], F1 = [0, £]U[2, 2]U[2,1], and so on. If you multiply the set by five,

5 55
you get 3 copies, so that d = E—g ~ 0.683. This is different than simply letting
a = 2 for the construction of D, wherein d = lg‘i ~ 0.576. In this scenario

the amount taken away from each interval is the sa;ne, and yet the dimension is
different. This shows that the shape of the construction and the self-similarity
can also change the dimension, rather than just how much of the set is taken
away each step.



3 Self-Repeating Fractals in the Plane and in
the 3D Space

I will continue with the idea of dimension on other self-repeating objects, al-
though be weary that this definition can be completely nonsensical if used
wrongly, and I will explain why later. Let’s call a set a fractal if its dimen-
sion is not an integer. So the Cantor set is a fractal, and so are the alternate
sets described in the previous section. Here is an incomplete list of fractals.

3.1 Cantor dusts in 2D and 3D
3.1.1 2D cantor dust:

Consider the Cantor dust C' x C' described in 1.2.7 and constructed in figure
2 and figure 3. When multiplying the set by 3, it will have 4 copies. So d =

Ind
It 1.262.

3.1.2 3D cantor dust:

Complete the same construction but in 3 dimensions, ie C' x C' x C, shown in
figure 4. Multiply the set by 3, and it will have 8 copies. So d = }E—g ~ 1.893.
This is curious, as an object that clearly expands in 3 dimensions has a dimension
less than 2, meaning it is somehow less than even the plane. You might conclude
that this cantor dust can be projected onto the plane. This is true, and we can

project it to an even "smaller” object (of less dimension), the Sierpinski Carpet.

3.2 Sierpinski Carpet
3.2.1 Construction and dimension

Complete the cantor dust but with an intersection instead of a union. Meaning
that S = {(z1,22) € R? : 21 € C Vx5 € C}. This creates the Sierpinski Carpet
(figure 5). Multiplying this set by 3 yields 8 copies, so d = % =~ 1.893, exactly

like the Cantor dust in 3D.

3.2.2 Projecting Cantor dust in 3D onto the Sierpinski carpet

The Cantor dust and the Sierpinski carpet have the same dimension. Perhaps
this hints that they are similar objects? This would be surprising, as they
look nothing alike. If we look at how the dimension is calculated, we find that
multiplying each set by 3 yields 8 copies of the set. So relating each copy can
help us find a relation between the two objects.

For each iteration of the Cantor dust in 3D, a cube turns into 8 cubes of % size.
And for each iteration of the Sierpinski carpet, a carpet turns into 8 carpets
of % size. We can understand that the Cantor dust and the Sierpinski carpet
are compact, like the Cantor set, because they are made up of points whose
coordinates are in the Cantor set or in the unit interval. Like in the Cantor






Figure 5: Sierpinkski Carpet [8]
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set, we assert that an element is in the Cantor dust iff it can be written as a
sequence ai, as, ... where a,, denotes which cube of the nth iteration the element
is in. There are 8 possible cubes out of 27 for each a,,, so the sequence should
be with each a, be from 1 to 8 (if we number the first numbers 1-8 as the edge
cubes).

We do a similar thing for the Sierpinski carpet. We assert that an element is
in the Sierpinski carpet iff it can be written as a sequence by, ba, ... where b,
denotes which square of the nth iteration the element is in. There are 8 possible
squares out of 9 for each a,, so the sequence should be with each b,, from 1 to
8 (if we number the first numbers 1-8 as the outer squares).

We can project an element (a,,) from the dust to the carpet by letting its carpet
sequence be (b,) = (a,), and we can project an element (b,, from the carpet to
the dust by letting its dust sequence be (a,,) = (b,). So, you can form a bijection
between the two objects. While a bijection doesn’t signify the same dimension
(there are curves from a 1D interval to a square), the construction should help
show that the Cantor dust in 3D and the Sierpinski carpet are similar objects
with the same self-similarity relation.

3.2.3 Menger sponge

Perform the similar construction of the carpet but in 3D (figure 6). Multiplying
this set by 3 yields 8 + 4 + 8 = 20 copies, so d = 1{;—230 R 2.727.

3.3 Sierprinski Triangle and the Tetrix
3.3.1 Construction and dimension

There are many ways to construct the Sierprinsky Triangle. One way is to start
with a line, and on each iteration replace it with 3 shorter segments of equal
length at 120 degrees from each other (figure 7). This creates a space-filling
curve for the Sierprinsky Triangle. One can simply make the object by starting
with an equilateral triangle and removing the open middle equilateral triangle
for each subtriangle in the next iteration (figure 8). Multiply the Sierprinsky
Triangle by 2 and get 3 copies, so the dimension d = iﬁ—; ~ 1.585.

3.3.2 The Tetrix

Now make a similar thing in 3 dimensions (figure 9). Start with an equilateral
pyramid. Shrink to half size, and place 4 of them together: 3 at the bottom,
1 at the top. It follows that multiplying the tetrix by 2 will get 4 copies, so
the dimension d = % ~ 2. If we interpret this in linear algebra dimension,
we might conjecture that the tetrix can be projected onto a plane. And it can,
in multiple ways. Figure 10 and figure 11 display 1 way to do it. The idea
behind it is that you may color a square into 4 small squares of equal size, and
repeat this indefinitely. There are 4 squares for each iteration, and there are 4
pyramids for each iteration of the tetrix; equating the sequences for these will

give a bijection between the points in the tetrix and the plane, like the Cantor
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Figure 6: Menger Sponge [8]
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Figure 7: Sierprinsky Triangle Line Construction

Figure 8: Sierprinsky Triangle
..




Figure 9: Tetrix (Sierpinski Pyramid)

dust to Sierprinski carpet equivalency. Knowing that its dimension is 2, the
tetrix is not a fractal as defined.

3.4 Koch curves

3.4.1 Type 2 von Koch curve

Consider the construction of snaking a line into two squarical shapes, shown in
figure 12. When multiplied by 4, the constructed fractal would have 8 identical
copies: 1 on each end, and 3 on each squarical shape. So the dimension is

In8 __
s _ 5
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Figure 11: Get a bijection from
Figure 10: Rotate the tetrix. the tetrix to a square.

Figure 12: von Koch curve of type 2 / Minowski Sausage [10]
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Figure 13: Koch snowflake

3.4.2 Koch curve / Koch snowflake

The construction can be started from a triangle (3 sides) or a line (1 side), either
of which is fine. Start with your line. With each iteration, remove the middle
third of the line and in place add an isosceles triangle with lengths a third
of the line (figure 13). This is one of the earliest fractals to be constructed
geometrically (in [13]), and demonstrates a shape of infinite perimeter (scaling
with (3)") and finite area. More importantly, the curve is continuous and has
no tangents. Here tripling the size yields 4 copies (4 lines of original size), so

that the dimension is ig—g ~ 1.262.
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3.5 Other

There are other self-repeating fractals, but I will not list them. They are more
complex, with self-similarities that are much less obvious, making calculations
less rudimentary to show.
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4 Fractals are Not All Self-Repeating

For a finite set of points, the dimension will always be 0, as the number of
points after being multiplied is the same, giving § = 1 so that d = 0. This
is nice but somehow the dimension of a countably infinite number of points is
less. For example, take the set N. I will half this set. 1 -N=NU N+ {1}).
In comparison to the original set, this can be said to be twice the original set,
because for each natural number in the set there is a corresponding number a
half to the left. This gives % = 24 50 that d = —1. This is obviously purely
nonsensical, and yet if you try to multiply the set by 2 you will find that it does
shrink to half size as predicted. So something is definitely wrong about how we
consider the self-similarity here. There is no end to any ”copy,” so forget about
trying to find them. For example, 2- (R x R) = R x R so its dimension will be 0,
but you’d be silly to say that the plane has a dimension of 0. With the current
definition we may restrict ourselves only to objects which are bounded, and call
the dimension of any set of a countable number of points to be 0. Even with
this issue, there are still some objects which are not self similar. If I magnified
a tree I would never be able to find another true copy of a tree in the tree.
I cannot in good faith convince myself that the next branching off in the tree
gives a perfect copy of the tree. In similar manner, sets like the Mandelbrot set
will have apparent but imperfect self-similarity along certain paths, warranting
the use of more sophisticated definitions of dimension.

4.1 Interpreting Dimension: Roughness

For self-similar objects, magnifying into the object (or increasing its size) will
reveal more copies of the object the higher dimension it has. Therefore, for two
objects observed at certain resolution, zooming into each objec will reveal more
pertubations in the object with a higher dimension. Hence the high-dimension
object can be said to be rougher. We can generalize this idea with multiple
definitions of dimension.

4.2 Box-counting Dimension
4.2.1 Definition: cover

Let S C X, and let O = {O; C X : j € J} be an arbitrarily (possibly un-
countably) indexed collection of subsets of X. Then, O is a cover of S in X if
SCU0;CX:je)

4.2.2 Definition: N(e)

Let S C R™ be bounded. Tile R™ with lines, squares, cubes, or higher-dimensional
counterparts (collectively T will call them "boxes”) of side length €. Since S is
bounded, there are a finite number of boxes that cover S. Denote N (e) as the
minimal number of boxes required to make up a cover of S. In practice, this
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just requires counting all the boxes created such that a point from S is in each
box.

4.2.3 Definition: Minkowski-Bouligand dimension [4]

Let us approximate the size of an object by its number of boxes. Suppose that
the object was magnified to % original size, meaning that the resolution was
changed; R™ was retiled with boxes of size e. Then the approximated new size
is N(e). The dimension may be given by ()% = N(e), so that d. = lnl(njzll(ﬁ)))
Continue magnifying, so that dimp.,(S) = lim_,+ode, or alternatively if the
limit does not exist, one can take the limsup and liminf for other upper and
lower box counting dimension [4]. (in this case the limsup isn’t of a sequence
and can be defined as lim,_,+qsup{ds : 0 < ¢ < ¢}, and similarly for the liminf.)
A small note is that since S is bounded, so is 35, the boundary of S. So one
can find the dimension of both a set and its boundary, and these are often but
not always different.

4.2.4 Computing the box counting dimension of several irregular
objects

Consider the coast of England shown in figure 14. Here € decreases by 5+ by
reducing the length of each box to a half each iteration. You can use the identity
dn(2) = In(N(e)) so that computing dimy,, means finding the slope, d, of
In(N(e)) WRT In(1) as e decays. So when the graph of In(N(e)) WRT In(%)
becomes consistently approximately linear (or else the resolution might be too
low to pick up on the correct shape), one may approximate dimy,, as the slope
of the graph. This ends up being approximately 1.25. Of course, there are some
problems to doing this. In real life the shape is finite, but we can’t measure its
true length. But at some point when € is much less than the Planck length, the
dimension will return to being 1.

One can consider the coastline as an example of a yet-formed fractal (in the
non-self-similar sense) that, over infinite time and if space was truly continuous,
will give a fractal due to the phenomena creating it (erosion, wave corrosion,
etc); in this sense one may say that the phenomena creating the coastline may
be modeled to roughen it to the degree of the calculated dimension. This is
more sensical in the next example, where an imperfect self-similarity is created.
Consider the cross sections of Green Broccoli or White Cauliflower. Somebody
was either really bored or really interested, and decided to calculate dimensions
for each. In this example a weak imperfect self-similarity may be apparant,
being that the plants branch out to more branches of lesser size. So finding the
dimension may help identify the degree to which the plant grows rough. In [9]
the nerd in question describes using the box counting method on several vertical
and horizontal cross sections of the broccolis and cauliflowers to find that the
average dimension for a broccoli cross section is 1.78 £0.02 and that the average
dimension for the cauliflower cross section is 1.88 £0.02. This should intuitively
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Figure 14: Estimating the box-counting dimension of the coast (boundary) of
England [11]

make sense, as a broccoli will end up thinner and with less branches than a
cauliflower, which expands more quickly.

4.2.5 Alternative Definitions for box-counting dimension

Instead, let Ncovemng(e) be the minimal number of open balls of radius € required
to cover S, with the requirement that each ball be centered at S. And, let
Npacking(€) be the maximum number of open balls of radius e centered at S
such that the balls are disjoint (figure 15). These definitions generalize the
box counting method to a general metric space (S,d), which is a set with a
metric d (distance) that behaves as typically expected; and this is very good
because a superset for S is not even required. Typically, these definitions give
the same result.
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Figure 15: Left: packing. Center: covering. Right: box covering. [12]

0

4.3 Hausdorff / Hausdorff-Besicovich Dimension

The Haudroff dimension will work for a general metric space, and its result can
be infinite [1].

4.3.1 Definition: Hausdorff Measure [2]

Let (X, p) be a metric space, and for any U C X define the diameter (tradition-
ally) as diamU := sup{p(x,y) : x,y € U} and diam¢ := 0.

We will do a similar construction to the ball covering. Have § > 0 be the maxi-
mal size of countably many sets U; used to cover S. Approximating each set U;
as a ball in d dimensions, its characteristic volume should scale by (diamU;)<.
Formally, let S C X and ¢ > 0.

Then HE(S) = inf{> ;2 (diamU;)? : | J;=, U; 2 S,diamU; < 6}. The smaller §
is, the less choice in the cover; Hg(S ) is non-decreasing with decreasing ¢, and
may become infinite. Finally, define the Hausdorff measure:

HY(S) = supg- o H(S) = lims_o HZ(S).

The Hausdorff measure is proportional to the typical lebesque measure (number
of points for d=0, length for d=1, area for d=2, etc.) for integer d on nice sets
(borel sets), because the diameter is scaled the same with the same d. To correct
for true lebesque measure, simply scale the Haudroff measure by the size of a
unit diameter ”ball” in the d dimension.

The most important quality of the Hausdorff measure, other than the fact that
it is a measure, is that on a dilation like o - S, H%(a - §) = a?H4(S).
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4.3.2 Definition: Hausdorff dimension

dimg (S) ;= inf{d > 0: H(S) = 0} = (sometimes) sup{d > 0: H%(S) = c}.
One can think of the Hausdorff dimension as the passing point between when
the object is negligible in d > dim g (S) dimensions to when it becomes too large
in d < dimg(S) dimensions.

4.4 Properties of the Hausdorff vs the Box Counting Di-
mension [4] [1]

Firstly, the box counting dimension will not work well on unbounded sets, be-
cause N (e) will simply end up infinite for any e. However, the Hausdorff dimen-
sion works fine on unbounded sets, since measure may be infinite; the Hausdorff
dimension is defined as the highest lower bound of the dimensions where the
Hausdorff measure of the object is 0. Objects may be unbounded (like an infi-
nite line in 3D space) but still have a Hausdorff dimension (1 in this example).
For that reason the box dimension of a union of sets only works for finitely many
sets, in which case the maximum dimension of the sets used is the dimension
of the union. However, the Hausdorff dimension of the union of any countably
many sets is the supremum of their dimensions.

Consider the set of rationals in [0,1]. Because the set of rationals is dense, in
any box in R there will be a rational number, so that N(e) = ceiling(). This
scales with % so that the resulting box counting dimension is 1. Meanwhile,
any countable set has a Hausdorff dimension of 0. This is because you simply
need a countable cover of sets, with each set being a point from the original set
wherein the diameter is 0. Hence the measure is 0 for any dimension, so the
infimum taken will be 0.

dimpg (S) < dimpog tower < diMpog, ypper Where the denoted lower and upper box
dimensions are the liminf and limsup definitions of the box dimension (if the
box dimension exists, it satisfies dimpog jower < diMpoy < diMpog, upper-)

Some other niceties include:

dimpog, upper (A+ B) < diMpog upper (A) + diMpog upper (B) (verify for Cantor set.)
While dimg{0, 1, %, %, ...} = 0 (countable), dimp,.{0,1, %, %, ...} =1 One
can verify this by using a similar idea to Cauchy condensation.

4.5 THEOREM: For self-similar shapes satisfying the open
set condition (most of them), the Hausdorff dimension
is the typical fractal dimension. [1]

4.5.1 (rough) Definition: contractive mapping

If (M,d) is a subspace, then a contractive mapping is a function f : M — M
so that 3k € [0,1) so that Va,y € M, d(f(x), f(y)) < k-d(z,y). Note that here
the image of the function need not be the whole of M, and for us it shouldn’t
be the whole of M, as we will be shrinking the objects.
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4.5.2 (rough) Definition: open set condition (OSC)

Suppose ¥; : R® — R™ i =1,...,m is a finite sequence of contractive mappings
(0 <k < 1 for each). Then this list of contractive mappings has the open set
condition if

There is an open set V C R with a compact closure such that |J;~, ¢;(V) C V,
with the important condition that all the v;(V') are pairwise disjoint.

The idea behind this is that the contractions do not create a shape that over-
laps a lot. The shape created might be overlapping at the boundary, but the
Hausdorff measure of such boundary would not be signficant. For example, in
the Sierpinski triangle, the Sierpinski triangles created by contracting the over-
all figure do overlap each at one of their edges, but the contractions defined to
create the Sierpinski triangle will meet the OSC.

4.5.3 Isometries and dilations

When making self-similar recursion, we used the idea that each copy must pre-
serve the original shape of the overall object. An isometry is a perfect distance-
preserving map, like a translation or a rotation (or both together). Te, if f is the
isometry then d(z,y) = d(f(z), f(y))Vx, y (for this application both the domain
and codomain is R” so the metric is the same).

A dilation is a mapping from a set to itself so that d(z,y) = a-d(f(x), f(y))Vx,y
for some a > 0. For this application we will have o < 1 so that the object is
shrunk.

4.5.4 Formulation of the theorem:

Let ¢; : R® — R™,i =1,...,m be a finite sequence of contractive mappings that
are also similitudes, ie strictly compositions of isometries and dilations (rotated
and/or/both moved shrunk copies of the original shape, with «; < 1 being the
dilation factor for each ;). Let those contractions together meet the OSC. Then
the unique fixed point S = |J., ¢5(S) is a set whose Hausdorff dimension is s
where s is the unique solution of /", of = 1. And, a set A is self-similar for a
list of contractive mappins as described above ift H*(¢;(A) Ny;(A)) = OVi # j
(ie, the overlap between each copy is negligible); in this case S is self-similar.

4.5.5 (rough) Proof: [7]

Without many of the conditions present in the proof, let us simplify the prob-
lem and assume that S is self-similar with S = [J;~, ¢;(S) for the ¢; : R" —
R™ ¢ = 1,...,m similitudes that meet the OSC, describing its self similarity
with corresponding «; dilation factor for each. And suppose that d is the Haus-
dorff dimension of the object, and that the object is finite in said dimension:
0 < H%(S) < 0o. Then we may compute the dimension of said object.

Since H? is a measure and H%(1;(S)) = a¢H?(S) for each of the dilations of
factor oy, then H(S) = HH(U/L, vi(S)) = Yoty HA(i(S)) = S0, adHA(S).
Divide both sides by H¢(S) and get
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1=3", af

But, if a; = o is the same for each similtude, we have that 1 = ma® where
me is the number of copies. We have m = (X)¢, which recovers the original
definition of dimension presented. Notice that also if the a;s are different then
this equation can give a simple(esque) way to calculate the dimension if the

self-similarity produces copies which are not the same scale.

4.5.6 Use of the theorem to compute dimensions of self-similar shapes

Since the computation and formula is already provided, I will do one example;
the Hausdorff dimension of examples already presented will be obvious from
there. Take the Cantor set C. ¢ : R — R is given by ¢1(4) = % - A. And,
Yo : R — R is given by tho(A) = (3 - A) + {2}. For each of these two (m = 2),
o; = a = . Cis the set for which |J!", ¥;(C) = C, so its dimension is given
by 2 = (ﬁ)d, whose solution is d = {22 ~ 0.631.

4.5.7 Modified Cantor Set With an Uncentered Open Interval Re-
moved

Let us make a Cantor set, but place the open interval being removed somewhere
else at each step. We can make a construction with oy being the ratio of the
size of the left closed interval to the interval, and as being the ratio of the size
of the right closed interval to the interval. With both oy, > 0 and a4 < 1,
we have two contractive mappings. So Y .-, a;-i = af + o = 1, which may be
solved numerically.

If we let o = i, Qg = % (by removing the second open quarter, for example),
then (1)4+ (1)4 =1, 14 2¢ = 229, Substitute d = log, x, so now the equation
is 1 +2 = 22. This is solved explicitly with the quadratic formula: the result is
the reciprocal golden ratio, z = 1+T\/5 Now we have d = logQ(%) ~ 0.694
Of course, you may revise the construction to remove multiple open intervals
each step (thus having 3 or more contraction mappings), in which the same
equation 27;1 ad =1 may be used. It is highly computational and less inter-
esting to carry this out.
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Figure 16: Dragon curve construction
W </\§\ I
“ N

4.5.8 Heighway’s Dragon

The dimension d of a Heighway dragon’s boundary is ~ 1.524, which is given by
the equations z = 2%/2 and z® — 22 — 2 = 0 from relations of its self-similarity.
The curve is created by folding a paper indefinitely (figure 16). [6] uses the
formula 1 = Y"7", af but on infinite contractions m = oo that don’t overlap to
find the Hausdorff dimension d. It also provides a more satisfying finite method
that produces two contractions of size 273/2 and a single contraction of size
2-1/2 50 that 2 - (273/2)¢ - (271/2)4 = 1 which produces the same result.
(Note: the Hausdorff dimension of the dragon curve is 2; it is made up of
solid regions of squares. But the Hausdorff dimension of its boundary is that
described above, ~ 1.524.)

4.6 Extras: examples of the Hausdorff dimensions of ir-
regular shapes of dubious self-similarity

For this section you can refer to the list of fractals by Hausdorfl dimension
on wikipedia [3]. A bunch of smart people figured this out. I will just list
some results anticlimactically; these will be interesting to some people, without
explanation.

4.6.1 Space filling curves

Space-filling curves, created by homeomorphisms (continuous bijective map-
pings that preserve topology) from the unit interval [0, 1] to their respective
set, will have a Hausdorff dimension of 1 for [0,1] but a different Hausdorff
dimension of the respective image. (For example, the Peano curve can fill the
[0,1] x [0,1] plane from the unit interval [0,1]. This curve has a dimension of
2.) This has to do with how the objects are interlayed; while the unit interval
is in a straight line, the space filling curve generated will have different distance
between points. And, since the space filling curve literally ends up being the
space it fills, it is the same object and has the same dimension, otherwise should
I say the Hausdorff dimension of a square is 1?7 The dimension seemingly has
more to do with how the shape is layed out, rather than a notion of its relative
size and bijectivity to other sets.

In previous examples I have showed that dimension might correspond to bijec-
tion between objects, but it is apparent that this is not really correct; having
a different dimension does not prohibit bijectivity between objects, and saying
that having the same dimension implies bijectivity is short sighted.
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4.6.2 Random Motion

Brownian motion, the (2D) random motion of objects suspended in a medium,
is conjectured to have its internal area trajectory as Hausdroff dimension 2. Its
total boundary has Hausdroff dimension %. For Brownian motion in 1D, the
set of its zeroes is a measure 0 set that is nowhere dense and has dimension %
Additionally, there is also a way to describe a 1D Brownian motion as H-self-
similar, a notion from probability about how a stochastic process scales in time.
Brownian motion is H-self-similar with H = %, as the distribution of Brownian
motion at fixed time is normal with a variance proportional to the current time,
and hence its standard deviation is proportional to square root of time. Indeed,
multiplying any normal random variable by T scales its variance by T"/2, and

this is the case for Brownian motion.

4.6.3 Mandelbrot set

The Hausdorff dimension of it and its boundary is 2.

5 Finish.

Thanks for reading.

27



References

[1]

2]

[10]

[11]

Hausdroff dimension. https://en.wikipedia.org/wiki/Hausdorff_
dimension.

Hausdroff measure. https://en.wikipedia.org/wiki/Hausdorff_
measure.

List of fractals by hausdroff dimension. https://en.wikipedia.org/
wiki/List_of_fractals_by_Hausdorff_dimension.

Minkowski-bouligand dimension. https://en.wikipedia.org/wiki/
Minkowski%E2%80%93Bouligand_dimension.

Stephen Abbot. Understanding Analysis, volume 1.

Tainrong Zhang Angel Cheng. On the fractal structure of the bound-
ary of dragon curve. https://poignance.coiraweb.com/math/Fractals/
Dragon/Bound.html#Figure3.

Reese  Johnston. Hausdroff dimensions and  self-similarity.
https://math.stackexchange.com/questions/1928924/
hausdorff-dimensions-and-self-similarity.

Fabian Junge. Cantor set analysis and visualization in 2, 3, 4 dimen-
sions, using adsoda. https://new.math.uiuc.edu/math198/MA198-2012/
fjunge2/cantor_analysis_f junge2.pdf, 2012.

Sang-Hoon Kim. Fractal dimensions of a green broccoli and a white
cauliflower. https://arxiv.org/abs/cond-mat/0411597, 2004.

Prokofiev. The first 3 iterations of the type 2 quadratic koch
curve. https://commons.wikimedia.org/wiki/File:Quadratic_Koch_
curve_type2_iterations.png, 2007.

Prokofiev. Fractal dimension: Covering of a fractal curve (here the coast
of great britain) by grids of decreasing sizes. to measure the box-counting
dimension, we count how many squares contain parts of the curve. https:
//en.wikipedia.org/wiki/File:Great_Britain_Box.svg, 2010.

Prokofiev. Great britain coverings. https://commons.wikimedia.org/
wiki/File:Great_Britain_coverings.svg, 2010.

H. von Koch. On a continuous curve without a tangent, obtained by an
elementary geometrical construction. Ark. Mat. Astron. Fys., 1:681-702,
1904.

28



